道路桥梁工程 Road and Bridge Engineering

公路桥梁施工中软土地基施工技术的应用分析

Application Analysis of Soft Soil Foundation Construction Technology in Highway Bridge Construction

陶文超

Wenchao Tao

枣庄市道桥工程有限公司 中国•山东 枣庄 277100 Zaozhuang Daoqiao Engineering Co.,Ltd., Zaozhuang, Shandong, 277100, China 【摘 要】论文从公路桥梁施中软土地基的特点和可能存在的问题出发,介绍了公路桥梁施工中软土地基的施工技术。

[Abstract]Based on the characteristics and possible problems of soft soil foundation in highway bridge construction, this paper introduces the construction technology of soft soil foundation in highway bridge construction.

【关键词】软土地基;公路桥梁;施工技术;特点;问题

[Keywords] soft soil foundation; highway bridge; construction technology; characteristic; problem [DOI] 10.36012/etr.v1i4.636

1 引言

软土地基是指强度低、压缩量较高的软弱土层,多数含有一定的有机物质¹¹。由于软土强度低、易变形、不稳定,如果没有对软土进行合理的处理,就会使公路桥梁地基不稳,从而带来不可挽回的巨大损失。对软土地基进行处理是为了提高地基的稳定性,保证其承载能力。论文从软土地基的特点人手,分析其问题并提出合理的处理方式,促进公路桥梁施工的建设。

2 软土地基的特点

软土是指天然含水量较高、孔隙比大于 1、压缩性高、透水性差、抗剪强度低的细粒土^[2]。软土是一类土的总称,并不是一种特定的土,主要分布在沿海、平原、洼地、内陆湖盆等地区。软土地基的性质因地而异、因时而异,具有很高的不确定性。因此,在处理软土地基时,需要施工人员和技术人员了解其特点后再对其进行分析,并做出合理适当的处理使其符合公路桥梁地基的条件。

2.1 软土具有高压缩性

软土的孔隙比大于 1、含水量大、容水量小,同时,土壤中还含有大量的腐殖质、微生物和可燃气体,因此,软土具有压缩性高、不稳定、容易变形的特点。在其他相同条件下,软土的可塑性较高。

2.2 抗剪强度低

软土在受到外部压力和干扰时,会造成软土结构损坏,从 而使其强性变弱、抗剪强度变低,导致出现塌方、泥石流等。而 软土地基则可能导致地基塌陷、路面桥梁坍塌等安全事故。

2.3 软土地基含水量高、透水性差

软土含水量高、透水性差,不利于排水固结,对比同样水分的土壤来说,软土渗水远远比其他土壤的渗水速度慢,因此,软土地基上的建筑物沉降时间长,在施工初期也会影响地基的强度。

2.4 软土具有触变性

软土多为沉积作用后产生,如滨海、湖沼、河滩等的淤泥细粒土。在原状土没有受到外力作用时,软土能保持一定的形状并有一定的强度,一旦结构遭受破坏,其强度就会立刻变低,甚至呈现稀释状态。因此,软土地基在受到一定的冲击之后,就容易向两侧滑动、沉降或者底面向两侧挤出,发生安全事故。

2.5 软土结构不均匀

软土层中多含粉细沙透镜体,在平面及垂直方向上呈现 明显差异性,易产生建筑物地基的不均匀沉降。

3 公路桥梁软土地基施工容易出现的问题

通过对软土地基的分析,得出软土地基形态不稳定,容易

道路桥梁工程 Road and Bridge Engineering

受外界影响发生形变,在公路桥梁施工中,需要谨慎处理,否则将造成很大危害。若施工人员勘察设计不详细、不准确,就会影响施工人员对该路段的设计,导致软土地基的路段出现塌陷或者断裂的情况。另外,软土地基的高压缩性会使地基上的桥梁发生不均匀沉降,导致桥梁或者地面裂开和损坏。例如,中国汕头磊口大桥引道,由于高填土引起线外土地隆起,民房受损,路基难以稳定,只好增加桥梁长度,建成后一段时间,仍然出现锥坡不均匀下沉,又对其进行处理,现在已经针对其问题修改建造方案,改建了新桥。

除了软土地基本身出现的问题以外, 在对软土地基的处 理过程中也容易出现很多问题。各种不同的地基会有不同的 处理办法,就软土地基来说,不同的软土不同的厚度都有不同 的处理方法,并且各种地基的处理方法都有一定的适用范围, 并不是所有的软土地基都能用一种处理方法, 这需要设计者 仔细合理勘察当地的地质后,结合实际情况做出处理方案。目 前,中国地基评估处理的方法还不是十分完善,还不能很好地 处理具体的软土地基问题。例如,珠海南屏桥引道,虽然采用 了沙土堆载预压,路堤填土高度7m,但是施工不到位,在填土 2.5m 时就出现问题, 主要原因就是对土质的分析不到位,导 致工程不能进行。再加上专业人员匮乏,人员素质参差不齐, 很多工作人员并不具备很好的专业素养,没有经过严格的技 术培训,多数人来自基层,科学理论知识匮乏,导致对软土地 基的分析不到位。在软土地基的建设过程中,机械设备也是很 重要的一环。目前,中国的器械还不能满足软土地基建设技术 的需要,制约了软土地基的发展。

4 公路桥梁施工中软土地基的施工技术

由于软土地基具有高压缩性、抗剪强度低、含水量大、透水性低、触变性、结构不均匀等特点,不能直接当作天然地基使用,需要经过加工处理加强其强度,增强其稳定性。软土地基处理方式有很多,不同的情况有不同的方法,下文列举一些常用的处理方法。

4.1 堆载预压法

由于软土含水量高、透水性差、渗水很慢,因此,软土地基上的建筑沉降时间长,建筑不稳定。堆载预压法就是在工程建设之前,用大量填土荷载软土区域,促使地基提前固结沉降,减少工后沉降。在工程开始前,将填土除去,软土地基已经基本不会再发生沉积,此时便可进行道路和桥梁的修筑。堆载时要分层堆载,避免出现断层现象的同时,也使地基更牢固。这种方法原理简单、成本低,但是耗时长,在工期不变的情况下使用可以有效节约成本,如果时间不够可以配合

其他方法使用。

4.2 换填法

这种方法适用于软土面积不大的工程,有效处理深度为3m,采用人工或机械挖除施工范围内的全部软土,换填强度较高的黏性土或砂、卵石、片石等渗水性材料,换填的深度要根据承载力决定。这种方法虽然简单,但是需要大量的人工成本,耗时长。

4.3 深层密实法

深层密实法是指采用爆破、夯击、挤压和加入抗剪度高的材料等手段,对地基深层的软土进行加固加密的方法。如强夯法,是对孔隙较大且含水量适量的软土进行重锤夯实,土层在强大的冲击力下,会使孔隙缩小,夯击点周围一定深度会产生裂隙,水得以从孔隙中排除。这种方法适用于孔隙较大且含水量一定的黏性软土中,方法直接,对大面积软土也同样适用。

4.4 搅拌桩法

这种方法是利用固化剂与软土之间产生的一系列物理化学反应,通过特制的深层搅拌机械,在地基深处将软土与固化机进行搅拌,从而让软土稳定且坚固,从而提高地基承载力并减少地基沉降。这项技术对机械的要求比较高,需要大型的机械配合使用,对大面积软土也适用。

4.5 桩基法

桩基法适用于淤土层较厚、难以大面积进行深度处理的 软土地基,常见的有钢筋混凝土预制桩。通过钢筋混凝土预制 桩挤密与土层并靠摩擦承载,承载力很强,质量很高,施工速 度快。这种方法适用于大部分淤泥等比较厚、难处理的软土。 淤泥过厚的土层可使用灌注桩,将灌注桩打至硬土层,让硬土 作为承载台,再将填充物灌入其中,达到稳固软土地基的目 的。这种方法需要注意灌注桩是否完整和泥浆是否被污染,如 果处理不当就会导致建筑不均匀而发生沉陷。

5 结语

总之,在软土地基施工过程中,需要根据实际情况对软土 地基进行仔细的分析处理,得出施工方案,并制定多套方案, 应对随时可能发生的情况。公路和桥梁的施工覆盖面积通常 较大,各地段会出现不同的地质,这就需要施工人员和技术人 员仔细排查,使软土地基能够得到合理的运用。

参考文献

[1]管义能.公路桥梁施工中软土地基施工技术及应用实践探究 [J].建材与装饰,2016(25):259-260.

[2]宋超.软土地基施工技术在公路桥梁施工中的应用分析[J].企业科技与发展,2018(6):136-137.