一种级联双降压并网逆变器及其控制研究

Research on a Cascaded Dual-Buck Grid-Connected Inverter and Its Control

崔朝晖

Chaohui Cui

西南石油大学电气信息学院中国·四川 成都 610500

School of Electrical Information, Southwest Petroleum University, Chengdu, Sichuan, 610500, China

摘 要:论文首先提出了一种级联双降压光伏并网逆变器(CDBGCI)拓扑结构,基于此结构同时给出了一种新的三相单级移 相载波 SPWM(UPSCSWPM)控制策略,使三相共模电压和三相差模电压之和满足线周期的约束条件。通过对建立 CDBGCI 高频等效模型 8 种运行模态下的电路分析,得出各自模态下的单相共模电压和三相差模电压,表明 CDBGCI 的共模泄漏电流 理论上能够得到有效抑制。最后搭建了仿真实验平台对 CDBGCI 进行了仿真测试,由实验结果验证了上述单级 UPSCSWPM 控制策略和 CDBGCI 的正确性。

Abstract: The paper first proposed a cascaded dual-buck grid-connected inverter (CDBGCI) topology. Based on this structure, a new three-phase single-stage phase-shifted carrier SPWM (UPSCSWPM) control strategy was given to make the sum of the three-phase common mode voltage and the three-phase differential mode voltage meet the constraint condition of the line period. Through the establishment of the CDBGCI high-frequency equivalent model of the circuit analysis in 8 operating modes, the single-phase common mode voltage and the three-phase differential mode voltage in each mode are obtained, indicating that the common mode leakage current of CDBGCI can be effectively suppressed in theory. Finally, a simulation experiment platform was built to test CDBGCI, and the experimental results verified the correctness of the above-mentioned single-stage UPSCSWPM control strategy and CDBGCI.

关键词:级联光伏并网逆变器;共模漏电流;UPSCSWPM 控制

Keywords: cascaded dual-buck grid-connected inverter; common-mode leakage current; UPSCSWPM control

DOI:10.36012/etr.v2i7.2200

1 引言

随着光伏发电系统的发展,国际学者对级联型并网逆变 器高电能质量、可靠性和效率的要求日益提高^{11]}。但是由于在 实际应用过程中共模电压的高频变化会导致共模漏电流的 产生,出现的漏电流不只会使并网电流产生畸变,造成电磁 干扰等问题,而且还存在一定的安全风险^[2,3],因而抑制共模 漏电流是并网逆变器必须处理的核心问题^[4]。

传统的三相级联型光伏并网逆变器¹⁹,一般结构上电感 对称放置,所以单相差模电压极小。但是在实际应用过程中, 仍然存在着较大的三相共模电压、三相差模电压、单相共模 电压。但为了防止上下桥臂而设置的死区时间,使逆变器输 出的纹波产生不可避免的谐波电压,严重影响了逆变电路的 性能指标¹⁶⁻⁹¹。 基于此,本文提出了一种级联光伏并网逆变器拓扑结构,接着采用三相单级移相载波控制策略,通过对其简化的数学模型分为8种运行模态进行分析,得到每种模态下单相 共模电压和三相差模电压为常数,因此,共模泄漏电流可以 被有效抑制乃至消除。最后通过仿真实验平台参数的调制得 出波形分析,进一步验证了 CDBGCI 和 UPSCSWPM 控制策 略能够有效抑制共模漏电流。

2 级联双降压并网逆变器

2.1 级联双降压并网逆变器电路拓扑

级联双降压并网逆变器(Cascaded Dual-Buck Grid-Connected Inverter, CDBGCI)的拓扑结构如图 1 所示,其拓扑 结构分为 $a_{x}b_{x}c$ 三相。 S_{1} - S_{15} 为功率开关管 IGBT(Insulated Gate Bipolar Transistor); D_{1} - D_{12} 为独立的高性能二极管

【作者简介】崔朝晖(2000~),女,四川达州人,在读本科生,从事光伏并网逆变器漏电流及其控制策略研究。

(Diode)^[10]。 $L_{al} \sim L_{a4}$ 为 a 相的滤波电感(Filter Inductance), $L_{bl} \sim L_{ba}$ 为 b 相的滤波电感, $L_{cl} \sim L_{c4}$ 为 c 相的滤波电感。定义 *i*=a、 b、c,则每一相的 L_{i2} 和 L_{a3} 可以有效地防止桥臂直通现象的 发生,故电源开关不需要设置死区时间。 u_i 为电网电压,其中 $U_s=U_m \sin(2\pi ft), U_m \pi f$ 分别是 u_i 的振幅和频率, U_{dc} 是光伏 电池的直流端电压。 $C_i(i=a,b,c)$ 为三相逆变器的滤波电容 (Filter Capacitor), C_{gl} 和 C_{g2} 为三相逆变器直流光伏板对地 的寄生电容(Parasitic Capacitance)。 i_a, i_b 和 i_c 为三相并网相 电流(Three-Phase Grid-Connected Phase Current)。与传统的 三相级联型光伏并网逆变电路相比,CDBGCI 在直流电压侧 各相正端子处增加了附加开关,隔离了直流侧和电网,避免 了在光伏直流侧、交流电网和地面之间形成共模电路。

图 1 CDBGCI 的拓扑结构

2.2 单极移相载波正弦脉宽调制策略

 期导通), S_5 的驱动信号在正半周期与 S_1 相同,在负半周期 与 S_2 相同;在一个正弦 $T=2\pi$ 的周期下,如图 2b 所示,b 相 各个开关管 S_6 ~ S_{10} 的驱动信号得出情况同 a 相一致,只是相 比于 a 相来说超前了 $2\pi/3$;如图 2c 所示,同理 c 相各个开关 管 S_{11} ~ S_{15} 的驱动信号得出情况也同上述 a,b 相一致,只是相 比较于较 b 相来说超前了 $2\pi \times 3$ (即相对于 a 相来说超前了 $4\pi/3$)。

3 TPCDBGCI 运行特性

3.1 简化模型电路等效

根据文献^[11],对三相级联光伏并网逆变器的共模漏电流

变化情况进行了分析,建立了简化的 CDBGCI 模型。从图 1 中可以看出,*C*_{gi} 被定义为光伏系统与地面之间的寄生电容。 因 *C*_{gi} 电压高频变化,使产生较大共模泄漏电流。*U*_{Ai-N}(*i*=a、 b、c)是 A 和 N 之间的单相电压,*U*_{Bi-Ni}(*i*=a、b、c)是 B 和 N 之 间的单相电压。从传统的三相级联型光伏并网逆变器中可知 共模电压 *U*_{cmi}(Common Mode Voltage, CMV)和差模电压 *U*_{dmi} (Differential Mode Voltage, DMV)可定义如下:

$$U_{\rm cmi} = (U_{\rm Ai-Ni} + U_{\rm Bi-Ni})/2 \tag{1}$$

$$U_{\rm dmi} = (U_{\rm Ai-Ni} - U_{\rm Bi-Ni})/2$$
(2)

由式(1)和式(2)可知,桥臂 U_{Ai-Ni} 和 U_{Bi-Ni} 的单相中点电压为

$$U_{\text{Ai-Ni}} = U_{\text{cmi}} + 0.5 U_{\text{dmi}} \tag{3}$$

$$U_{\rm Bi-Ni} = U_{\rm cmi} - 0.5 U_{\rm dmi} \tag{4}$$

低频电网电压对共模漏电流的影响较小,因而能够忽略 电网电压的影响^[12,13]。并且在此基础上,可以在图 3 中建立模 式 1 和模式 2 的 CDBGCI 简化模型。同时设其满足 $C_{gi} = C_{gi1} + C_{gi2}, L_1 = L_{u4} = L_{14} = L_{u4} = L_{u4} = L_{u3} = L_{u3} = L_{u3}$ 。在电路设计过程中考虑了 $L_m >> L_n$ 的关系。等效电阻 L_i 满足:

$$L_{\text{ea}} = L_{\text{aa}} L_{\text{a}} \approx L_{\text{aa}} \tag{5}$$

$$L_{\rm eb} = L_{\rm bb+} L_{\rm b3} \approx L_{\rm bb} \tag{6}$$

$$L_{\rm ec} = L_{\rm c1+} L_{\rm c2} \approx L_{\rm c1} \tag{7}$$

图 3 模式 1 和模式 2 的简化模型

对于图 3 中的简化模型,可以应用基尔霍夫定律(Kirch-hoff's law)得出:

$$\frac{U_{\rm A0} - 0.5U_{\rm dma}}{Z_{\rm Lal}} + \frac{U_{\rm A0} - U_{\rm N0} + 0.5U_{\rm dma}}{Z_{\rm La}} + \frac{U_{\rm A0} + U_{\rm cma}}{Z_{\rm ga}} = 0 \qquad (8)$$

$$\frac{U_{\rm B0} - 0.5U_{\rm dmb}}{Z_{\rm lbl}} + \frac{U_{\rm B0} - U_{\rm N0} + 0.5U_{\rm dmb}}{Z_{\rm lcb}} + \frac{U_{\rm CN} + U_{\rm cmb}}{Z_{\rm gb}} = 0 \qquad (9)$$

$$\frac{U_{\rm C0} + 0.5U_{\rm dmc}}{Z_{\rm Lel}} + \frac{U_{\rm C0} - U_{\rm N0} + 0.5U_{\rm dmc}}{Z_{\rm Lec}} + \frac{U_{\rm C0} + U_{\rm cmc}}{Z_{\rm gc}} = 0 \quad (10)$$

$$\frac{U_{AN}+0.5U_{dma}}{Z_{Lea}} + \frac{U_{AN}+0.5U_{dmb}}{Z_{Lb}} + \frac{U_{CN}+0.5U_{dmc}}{Z_{Lcc}} = 0 \quad (11)$$

$$\begin{cases}
U_{AN}=U_{AO}-U_{NO} \\
U_{EN}=U_{BO}-U_{NO} \\
U_{CN}=U_{CO}-U_{NO}
\end{cases} \quad (12)$$

为了便于分析, 假设 $C_{gs}=C_{gs}=C_{gs}=C_{g}, L_{a1}=L_{b1}=L_{c1}=L/2, L_{ca}=L_{cb}=L_{cc}=L/2$ 。很容易看出, $L_{gs}=L_{gs}=L_{g}=1/(2sCg), Z_{1a1}=Z_{1b1}=Z_{1c1}=Z_{1}/2=sL/2, Z_{1ca}=Z_{1cb}=Z_{1cc}=Z_{1c}/2=sL/2$ 。推导式(8)到式(12)可得,单相共模漏电流为:

$$I_{\rm cmi} = \frac{(0.25Z_{\rm L} + Z_{\rm g})U_{\rm dm} - 0.5Z_{\rm L}U_{\rm cm} + (3Z_{\rm L} + 6Z_{\rm g})U_{\rm cmi}}{(0.5Z_{\rm L} + 2Z_{\rm g})(1.5Z_{\rm L} + 3Z_{\rm g})}$$
(13)

并且 Ucm 和 Udm 都满足以下:

$$U_{\rm cm} = U_{\rm cma} + U_{\rm cmb} + U_{\rm cmc} \tag{14}$$

$$U_{\rm dm} = U_{\rm dma} + U_{\rm dmb} + U_{\rm dmc} \tag{15}$$

由式(13)、式(14)和式(15)可知,*i*相(*i*=a、b、c)的共模 漏电流主要取决于三相共模电压、三相差模电压和单相共模 电压。因此,在如下条件:*U*_{cm}=常数,*U*_{dm}=常数下,模式1和模 式2的共模漏电流可以被有效地抑制。同样,也可以建立其 他模态的简化模型。根据理论计算验证,在*U*_{cm}=常数,*U*_{dm}=常 数的条件下能使共模漏电流得到有效抑制。

3.2 CDBGCI 运行特性分析

根据 CDBGCI 的拓扑结构及 UPSCSPWM 调制策略,提出的 CDBGCI 的工作方式可分为 8 种工作模态。

如图 4 模态一所示,电源功率开关管 S₁、S₄、S₅、S₆、S₉、S₁₀、 S₁₂、S₁₃、S₁₅ 导通,其余电源功率开关管(S₂、S₃、S₇、S₈、S₁₁、S₁₀、 S₁₄)关断。在此条件下,相位 A、相位 B 和相位 C 都处于正向 充电状态。根据电路运行图分析可以得出:U_{Aa-Na}=U_{Ab-Nb}=0, U_{Ba-Na}=U_{Bb-Nb}=U_{dc},U_{Ac-Ne}=U_{dc},U_{Bc-Ne}=0。从而计算出此时共模电 压 U_{cma}=U_{cmb}=U_{cme}=U_{dc}/2,差模电压 U_{dmb}=-U_{dc}/2,U_{dmc}=U_{dc}/2。

图 4 模态一

同理,可得出模态二至模态八的共模电压和差模电压,

CDBGCI在上述8种运行模态下的共模电压和差模电压如

表1所示。

表 1 CDBGCI 在上述 8 种运行模态下的

共植由	压和差模由压	
六法电	上"正在"天电上	

描大	功率开关	cmv		dmv			17	I.	
假心	管导通	$U_{\rm cma}$	$U_{\rm cmb}$	$U_{\rm cmc}$	$U_{ m dma}$	$U_{ m dmb}$	$U_{ m dmc}$	$U_{\rm cm}$	$U_{\rm dm}$
模态一	$S_1 S_4 S_5 S_6 S_9 S_{10} S_{12} S_{13} S_{15}$	$U_{\rm dc}/2$	$U_{\rm dc}/2$	$U_{\rm dc}/2$	$-U_{\rm dc}/2$	$-U_{\rm dc}/2$	$U_{\rm dc}/2$	$3U_{\rm dc}/2$	$-U_{\rm dc}/2$
模态二	$S_{1}, S_{4}, S_{5}, S_{9}, S_{13}$	$U_{\rm dc}/2$	$U_{\rm dc}/2$	$U_{\rm dc}/2$	$-U_{\rm dc}/2$	0	0	3U _{de} /2	$-U_{\rm dc}/2$
模态三	$S_1 S_4 S_5 S_7 S_8 S_{10} S_{11} S_{14} S_{15}$	$U_{\rm dc}/2$	$U_{\rm dc}/2$	U _{dc} /2	$-U_{\rm dc}/2$	U _{de} /2	$-U_{\rm dc}/2$	$3U_{de}/2$	$-U_{\rm dc}/2$
模态四	$S_{4n}S_{8n}S_{10n}$ $S_{11n}S_{14n}S_{15}$	$U_{\rm dc}/2$	$U_{\rm dc}/2$	$U_{\rm dc}/2$	0	0	$-U_{\rm dd}/2$	3U _{dd} /2	$-U_{\rm dc}/2$
模态五	$S_2 S_3 S_5 S_7 S_8 S_{10} S_{11} S_{14} S_{15}$	$U_{\rm dc}/2$	$U_{\rm dc}/2$	$U_{\rm dc}/2$	U _{dc} /2	$U_{\rm dc}/2$	$-U_{\rm dc}/2$	$3U_{\rm dc}/2$	$U_{\rm dc}/2$
模态六	$S_{3} \ S_{7} \ S_{8} \ S_{10} \ S_{14}$	$U_{\rm dc}/2$	$U_{\rm dc}/2$	$U_{\rm dc}/2$	$U_{ m dc}/0$	$U_{\rm dc}/2$	0	3U _{dd} /2	$U_{\rm dc}/2$
模态七	$S_2 S_3 S_5 S_6 S_9 S_{10} S_{12} S_{13} S_{10}$	$U_{\rm dc}/2$	$U_{\rm dc}/2$	U _{dc} /2	U _{dc} /2	$-U_{\rm dc}/2$	$U_{\rm dc}/2$	$3U_{\rm dc}/2$	$U_{\rm dc}/2$
模态八	$S_{2}, S_{3}, S_{5}, S_{9}, S_{13}$	$U_{\rm d}/2$	$U_{\rm dc}/2$	$U_{\rm dc}/2$	$U_{\rm dc}/2$	0	0	3U _{dd} /2	$U_{\rm dc}/2$

由表1中8种运行模态分析可知,CDBGCI为五电平输 出,可减少并网电流的谐波含量。表1中列出了CDBGCI的 三相(a相、b相、c相)在不同开关运行模态下的单相共模电 压(U_{cri})、单相差模电压(U_{dri})、三相差模电压和(U_{dr})及三相 共模电压和(U_{cri})。从上面的分析能够很容易看出,在整个循 环中,a相、b相、c相的单相共模电压(U_{cri})始终保持为恒定 的U_d/2,因此三相共模电压在一个周期内皆为3U_d/2,同时, 三相差模电压(U_{dr})在正半循环中的四个模态始终保持为恒 定的-U_d/2,在负半循环中保持为恒定的U_d/2。另外,在 CDBGCI拓扑运行续流阶段并没有体二极管参与续流,因此 系统反向恢复损耗小,可靠性较高。根据2.3简化模型电路 等效,可知满足消除共模漏电流的条件:U_{cri}=常数,U_{dr}=常 数,故共模漏电流能够被有效抑制乃至消除。此外在运行续 流阶段,体二极管未参与续流,故该电路反向恢复损耗极小, 可靠性较高。

4 基于 Simulink 的高可靠性三相逆变电路 模型仿真

4.1 CDBGCI的仿真模型

CDBGCI的控制设计电路如图 5 所示,电路采用固定开 关工作频率的电流跟踪控制器,使并网电流 i_a 、 i_b 、 i_c 与并网电 压 u_a 、 u_b 、 u_c 的频率和相位相同。并网电流 i_a 、 i_b 、 i_c 分别指的是 电路中 a、b、c 三相各自的相电流,将参考电流信号 i_a 、 i_b 、 i_c 分别与 a,b,c 三相各自地相电流 i_a 、 i_b 、 i_c 做比较,得出实际输 出电流与参考电流信号两者之间的误差,再经过 PI 调节,将 所得信号 $u_{control}$ 、 $u_{control2}$ 、 $u_{control3}$ 作为调制波与三角载波 ucarrier 比较放大作为主电路开关管 S1-S15 的控制信号。调制信号 $u_{control1}$ 、 $u_{control2}$ 、 $u_{control3}$ 三者在相位上彼此相差 120°,决定着单极 性调制切换周期 T_s 。

图 5 TPCDBGCI 的控制电路

4.2 Simulink 仿真和实验结果

为进一步验证本文提出的 CDBGCI 拓扑及其 UPSCSPWM 调制策略的可行性和正确性,搭建了仿真实验平台对 CDBGCI 进行测试。测试过程中的电路参数如表 2 所示。

表 2 仿真参数

参数	数值	参数	数值
$U_{ m dc}/{ m V}$	120	$U_{ m dc}/{ m V}$	220
$Z_{ m L}/\Omega$	1.2	$T_{\rm s}/{ m us}$	20
<i>f</i> /Hz	50	$L_{i2}=L_{i3}/uH$	0.6
$L_{aa}=L_{bb}=L_{cc}/uH$	450	$L_{\rm il}/{ m uH}$	250

CDBGCI 拓扑 a、b、c 三相各自的泄漏电流波形分别如图 6a、图 6b 和图 6c 所示,如图 6a 中 CDBGCI 拓扑 a 相漏电流 *I*_{ema} 波形,当 a 相电压 du/dt 达到最大值时,此时漏电流 *I*_{ema} 将 产生尖峰,漏电流 *I*_{ema} 的最大值约 30mA,但其值远远小于 300mA^[14]。同理,如图 6b 和图 6c 所示的 CDBGCI 拓扑 b、c 相泄漏电流 I_{amb}、I_{ame} 波形,同样其值远远小于 300mA,证明 CDBGCI 拓扑共模泄漏电流在线路周期内能被有效抑制。

c CDBGCIc 相的漏电流 I 波形

图 6 CDBGCI 拓扑 a、b、c 三相各自的泄漏电流波形

CDBGCI 拓扑的 a 相相电压 U_a 与 a 相相电流 i_a 如图 7 所示,呈现高度正弦同步,功率因数接近于 1,表明此时 CDBGCI 拓扑的输出接近只有有功功率,基本上没有无功功 率,故降低了线路功率损耗,大大提高了利用率。而 b、c 两相 与 a 相情况一致,只是彼此之间相位差了 120°。

图 7 a 相相电压 U_a与 a 相相电流 i_a 波形

再由图 8 中 CDBGCI 拓扑 a 相输出电流 *i*_a 的 FFT 分析 可以看出, CDBGCI 拓扑 a 相输出相电流 *i*_a 的基波(50Hz)的 幅值为 3.459A,总电流谐波失真率(THD)仅仅为 0.40%, THD 远远小于 5%,能够满足实际的要求^[15]。

图 8 CDBGCI 拓扑 a 相输出电流 ia 的 FFT 分析

此外, CDBGCI 桥臂 a 相上下桥臂电压 u_{Aa-Na} 、 u_{Ba-Na} 及两 者之差 u_{Aa-Na} 、 u_{Ba-Na} 波形如图 9 所示, 当 $i_{g}>0$ (即此时系统工作 在正半周期)时, a 相上桥臂电压 u_{Aa-Na} 在[0,60V]范围内变化, a 相下桥臂电压 u_{Ba-Na} 在[60V,120V]范围内变化。当 $i_{g}<0$ (即 此时系统工作在负半周期)时, a 相上桥臂电压 u_{Aa-Na} 在[60V, 120V]范围内变化, a 相下桥臂电压 u_{Ba-Na} 在[0,60V]范围内变 化。且桥臂 a 相上下桥臂电压 u_{Ba-Na} 在[0,60V]范围内变 化。且桥臂 a 相上下桥臂电压 u_{Aa-Na} , u_{Ba-Na} 之差 $u_{Aa-Na}+u_{Ba-Na}$ 的 波形在一个周期内在-120V、0、120V 之间进行变化。根据 $U_{dm}=(U_{Ai-Ni}-U_{Bi-Ni})/2$,可知其单相差模电压 U_{dma} 在一个周期内 在-60V($-U_{d}/2$)、0、60V($U_{d}/2$)之间进行变化,同上述表 1 中 结论对应。

两者之差 u_{Aa-Na}、u_{Ba-Na} 波形

因为本电路 a、b、c 三相对称,仅仅是在相位上依次相差 120°。所以 b、c 两相的输出电流 i,、i。的 FFT 分析以及单相差 模电压 U_{abb}、U_{dae} 与 a 相情况一致。

由图 10 和图 11 可以看到,三相差模电压之和 Uth 及其

局部放大波形,在整个电源频率(50Hz)循环中, U_{dm} 在-60V ($-U_{de}/2$)和 60V($+U_{de}/2$)之间交替发生变换,三相差模电压 (U_{dm})在正半循环中的 4 个模态始终保持恒定的 $-U_{de}/2$,在负 半循环中保持恒定 $U_{de}/2$ 。与理论分析一致,满足消除共模泄 漏电流的条件。

5 结语

本文提出 CDBGCI 及相应的调制策略(UPSCSPWM),通 过对 CDBGCI 的理论分析和实验研究,可得出以下结论:① 与传统的三相级联型光伏并网逆变器相比,由于 CDBGCI 采 用双降压型(Dual-buck)结构,无须设置死区时间,对称结构 使得逆变电路的性能较好,可靠性高。②在 PWM 控制的基 础上,提出了一种全新的单极移相载波正弦脉宽调制 (UPSCSPWM)策略。由实验验证可知,此调制策略满足 CDBGCI 可以降低开关损耗和导通损耗,提高逆变电路的工 作效率,使共模漏电流得到有效抑制。

参考文献

- [1] 姚志垒,肖岚,魏星.双降压全桥并网逆变器[J].中国电机工程学 报,2011,31(12):29-31.
- [2] 郭小强,贺冉,菅佳敏,等.非隔离型三相四桥臂光伏逆变器漏电流抑制研究[J].电工技术学报,2016,31(19):66-73.
- [3] 徐少华,李建林,惠东.多储能逆变器并联系统在微网孤岛条件 下的稳定性分析及其控制策略 [J]. 高电压技术,2015,41(10): 3266-3273.
- [4] 张兴,邵章平,王付胜,等.非隔离型三相三电平光伏逆变器的共 模电流抑制[J].中国电机工程学报,2013,33(3):29-36.
- [5] 郭小强,周佳乐,贾晓瑜,等.三相级联型光伏并网逆变器漏电流 抑制研究[J].中国电机工程学报,2015,35(2):1-10.
- [6] 姚致清,于飞,赵倩,等.基于模块化多电平换流器的大型光伏并 网系统仿真研究[J].中国电机工程学报,2013,36:27-33+6.
- [7] 刘飞.三相并网光伏发电系统的运行控制策略[D].武汉:华中科 技大学,2008.
- [8] 韩民晓,代双寅.分布式电源并网中电能质量及相关标准探讨 [J].中国标准化,2010(12):28-32
- [9] 陈炜,艾欣,吴涛,等.光伏并网发电系统对电网的影响研究综述 [J].电力自动化设备,2013(2):26-32+39.
- [10] 王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2000.
- [11] 姚致清,于飞,赵倩,等.基于模块化多电平换流器的大型光伏并 网系统仿真研究[J].中国电机工程学报,2013,36:27-33+6.
- [12] 郭小强,魏宝泽,杨秋霞,等.六开关光伏并网逆变器共模漏电流 抑制方法[J].电力系统自动化,2014,38(14):101-105
- [13] 潘力,李红伟,代云中,等.六开关非隔离型双降压光伏并网逆变 器共模漏电流抑制研究[J].智慧电力,2019,47(2):43-48.
- [14] 周玉斐,黄文新,赵萍.三相耦合电感单级升压逆变器非隔离光 伏并网发电系统[J].电工技术学报,2015,30(6):190-199.
- [15] 肖湘宁.电能质量分析与控制[M].北京:中国电力出版社,2010.